A new method for constructing exact solutions to nonlinear delay partial differential equations
نویسندگان
چکیده
We propose a new method for constructing exact solutions to nonlinear delay reaction–diffusion equations of the form ut = kuxx + F (u,w), where u = u(x, t), w = u(x, t−τ), and τ is the delay time. The method is based on searching for solutions in the form u = ∑N n=1 ξn(x)ηn(t), where the functions ξn(x) and ηn(t) are determined from additional functional constraints (which are difference or functional equations) and the original delay partial differential equation. All of the equations considered contain one or two arbitrary functions of a single argument. We describe a considerable number of new exact generalized separable solutions and a few more complex solutions representing a nonlinear superposition of generalized separable and traveling wave solutions. All solutions involve free parameters (in some cases, infinitely many parameters) and so can be suitable for solving certain problems and testing approximate analytical and numerical methods for nonlinear delay PDEs. The results are extended to a wide class of nonlinear partial differential-difference equations involving arbitrary linear differential operators of any order with respect to the independent variables x and t (in particular, this class includes the nonlinear delay Klein–Gordon equation) as well as to some partial functional differential equations with time-varying delay.
منابع مشابه
Application of the new extended (G'/G) -expansion method to find exact solutions for nonlinear partial differential equation
In recent years, numerous approaches have been utilized for finding the exact solutions to nonlinear partial differential equations. One such method is known as the new extended (G'/G)-expansion method and was proposed by Roshid et al. In this paper, we apply this method and achieve exact solutions to nonlinear partial differential equations (NLPDEs), namely the Benjamin-Ono equation. It is est...
متن کاملExact travelling wave solutions for some complex nonlinear partial differential equations
This paper reflects the implementation of a reliable technique which is called $left(frac{G'}{G}right)$-expansion ethod for constructing exact travelling wave solutions of nonlinear partial differential equations. The proposed algorithm has been successfully tested on two two selected equations, the balance numbers of which are not positive integers namely Kundu-Eckhaus equation and Derivat...
متن کاملNew explicit and Soliton Wave Solutions of Some Nonlinear Partial Differential Equations with Infinite Series Method
To start with, having employed transformation wave, some nonlinear partial differential equations have been converted into an ODE. Then, using the infinite series method for equations with similar linear part, the researchers have earned the exact soliton solutions of the selected equations. It is required to state that the infinite series method is a well-organized method for obtaining exact s...
متن کاملA new fractional sub-equation method for solving the space-time fractional differential equations in mathematical physics
In this paper, a new fractional sub-equation method is proposed for finding exact solutions of fractional partial differential equations (FPDEs) in the sense of modified Riemann-Liouville derivative. With the aid of symbolic computation, we choose the space-time fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZKBBM) equation in mathematical physics with a source to illustrate the validity a...
متن کاملOn the Exact Solution for Nonlinear Partial Differential Equations
In this study, we aim to construct a traveling wave solution for nonlinear partial differential equations. In this regards, a cosine-function method is used to find and generate the exact solutions for three different types of nonlinear partial differential equations such as general regularized long wave equation (GRLW), general Korteweg-de Vries equation (GKDV) and general equal width wave equ...
متن کامل